

Sustainability in smallholder farming in Africa

Prof. Jude L. Capper

3rd November 2021

Source: Dr. Jude L. Capper, 2021

There is no definitive sustainable protein system – but every system can be sustainable

Harper Adams

Sustainability comprises three pillars, all under the umbrella of One Health

Source: Created by Dr. Jude L. Capper, 2020.

A negative correlation exists between milk yield and carbon emissions

Source: Created by Dr. Jude L. Capper, 2016; data from: FAO (2010) Greenhouse Gas Emissions from the Dairy Sector. FAO, Rome, Italy.

What could global dairying look like if we improved health, nutrition and genetics?

2,577 kg

Global average yield

8,140 kg

-181 million

If all dairy cattle had UK yields, global milk supply could be maintained using 181 million fewer cows (69%).

At US average yields, 200 million fewer cows (75%)

Source: Created by Dr. Jude L. Capper, 2020. Data from: FAOSTAT (2020) http://www.fao.org/faostat/en/

Jersey *vs.* Holstein: Summary of breed characteristics

The second		Holstein	Jersey
n	Daily Milk Yield (kg)	29.1	20.9
1	Fat %	3.8	4.8
	Protein %	3.1	3.7
7	Cheese Yield (%)	10.1	12.5
	Calving Interval (mo)	14.1	13.7
	Annual Turnover %	34.5	30.0
	Expected # Lactations	2.54	3.00
	Age @ First Calving (mo)	26.1	25.3
	Heifer:Cow Ratio	0.86	0.83
	Mature Cow Body Weight (kg)	680	454

of. Jude Cappe @bovidiva

Harper Adams University

Both the reduction and dilution of maintenance reduce energy use per unit of cheese

Source: Created as an example by Dr. Jude L. Capper, 2021; Based on nutrient requirements for a 681 kg Holstein cow (29.1 kg milk, 3.8% fat, 3.1% protein) and 454 kg Jersey cow (20.9 kg milk, 4.8% fat, 3.8% protein).

of. Jude Capper @bovidiva

Jersey vs. Holstein: comparison of resource use and environmental impact

Source: Created by Dr. Jude L. Capper, 2021. Data from Capper, J. L. and R. A. Cady (2012). A comparison of the environmental impact of Jersey vs. Holstein milk for cheese production. *J. Dairy Sci.*

Harper Adams University

Effect of cow characteristics on greenhouse gas emissions per unit of cheese

Source: Created by Dr. Jude L. Capper, 2021. Adapted from Capper, J. L. and R. A. Cady (2012). A comparison of the environmental impact of Jersey vs. Holstein milk for cheese production. *J. Dairy Sci.*

of. Jude Cappe @bovidiva

Output per kg bodyweight: smaller cow yielding less = big cow yielding more

Source: Created by Dr. Jude L. Capper, 2021. Adapted from Capper, J. L. and R. A. Cady (2012). A comparison of the environmental impact of Jersey vs. Holstein milk for cheese production. *J. Dairy Sci*

Smallholder farms are a crucial component of world agriculture

There are over 570 million smallholder farms worldwide, operating on 12% of global farmland.

Source: Created by Dr. Jude L. Capper, 2021. Data from: Lowder et al. 2016. World Dev 87. Photo source: Ibrahim El-Mezayen, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons.

A negative correlation exists between milk yield and carbon emissions

Source: Created by Dr. Jude L. Capper, 2016; data from: FAO (2010) Greenhouse Gas Emissions from the Dairy Sector. FAO, Rome, Italy.

Multiple opportunities exist for smallholders to reduce GHG emissions

of. Jude Cappel @bovidiva

Disease losses are significant and preventable, but the sustainability impacts aren't quantified

At the worldwide level, average losses due to animal diseases are more than 20% (OIE, 2008)

Source: Created by Dr. Jude L. Capper, 2020. Data from: World Organization for Animal Health. 2008. http://www.oie.int/for-the-media/editorials/detail/article/feeding-the-world-better-by-controlling-animal-diseases

Harper Adams University

GHG emissions could be cut significantly by mitigating dairy diseases - Kenya

Source: Created by Dr. Jude L. Capper, 2021. Data from: Statham et al. 2021. Dairy Cattle Health and Greenhouse Gas Emissions Pilot Study: Chile, Kenya and the UK. Available from: https://dairysustainabilityframework.org/wp-content/uploads/2020/10/Dairy-Cattle-Health-and-GHG-Emissions-Pilot-Study-Report.pdf

What are the milk, meat and greenhouse gas implications of global dairy cow mortality?

4,500 kg

8,537 kg

Meat lost if cow dies kg CW

3,751

Source: Created by Dr. Jude L. Capper, 2021. Calculated as an example based on a 4,500 kg annual milk yield, 26 mo age at first calving, 14 mo calving interval, 248 kg carcass weight, 0.69 live calves born/yr, 0.50 calves reared for beef, and average of 1,731 kg CO₂e GHG emissions per heifer/yr.

rof. Jude Cappe

The carbon footprint of smallholder dairying may be considerably reduced by GWP*

 $GWP_{100} = 2.30 \text{ kg } CO_2e/\text{kg } FPCM$

GWP* = 1.00 kg CO₂e/kg FPCM

Source: Created by Dr. Jude L. Capper, 2021. Calculation based on carbon footprint of smallholder dairy production cited by Garg et al. (2016) **Animal Production Science 56.**

Prof. Jude Capper (@bovidiva

Methane emissions factors must be applicable to cattle, feed and system

Source: Created by Dr. Jude L. Capper, 2021. Photo attribution: Mullookkaaran, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

How do we account for myriad livestock benefits in sustainability metrics?

You don't have be the biggest, you do need to do your best

f. Jude Cappe @bovidiva

Thank you!

JCapper@Harper-Adams.ac.uk http://bovidiva.com/presentationlinks

Questions?

Source: Created by Dr. Jude L. Capper, 2021. Cartoon from: http://RubesCartoons.com